Search results for " Stress intensity factor"
showing 6 items of 6 documents
Investigation of the crack tip stress field in a stainless steel SENT specimen by means of Thermoelastic Stress Analysis
2019
Abstract In this work a Thermoelastic Stress Analysis (TSA) setup is implemented to investigates the Thermoelastic and Second Harmonic signals on a fatigue loaded Single Edge Notched Tension (SENT) specimen made of stainless steel AISI 304L. Three load ratios are in particular applied, R=-1, 0, 0.1. The thermoelastic signal is used to evaluate the Stress Intensity Factor via two approaches, the Stanley-Chan linear interpolation method and the over-deterministic least-square fitting (LSF) method using the Williams’ series expansion. Regarding least-square fitting, an iterative procedure is proposed to identify the optimal crack tip position in the thermoelastic maps. The SIF and T-Stress are…
On the accuracy of the fast hierarchical DBEM for the analysis of static and dynamic crack problems
2010
In this paper the main features of a fast dual boundary element method based on the use of hierarchical matrices and iterative solvers are described and its effectiveness for fracture mechanics problems, both in the static and dynamic case, is demonstrated. The fast solver is built by representing the collocation matrix in hierarchical format and by using a preconditioned GMRES for the solution of the algebraic system. The preconditioner is computed in hierarchical format by LU decomposition of a coarse hierarchical representation of the collocation matrix. The method is applied to elastostatic problems and to elastodynamic cases represented in the Laplace transform domain. The application …
Rapid evaluation of notch stress intensity factors using the peak stress method with 3D tetrahedral finite element models: Comparison of commercial c…
2022
The peak stress method (PSM) allows a rapid application of the notch stress intensity factor (NSIF) approach to the fatigue life assessment of welded structures, by employing the linear elastic peak stresses evaluated by FE analyses with coarse meshes. Because of the widespread adoption of 3D modeling of large and complex structures in the industry, the PSM has recently been boosted by including four-node and ten-node tetrahedral elements of Ansys FE software, which allows to discretize complex geometries. In this paper, a Round Robin among eleven Italian Universities has been performed to calibrate the PSM with seven different commercial FE software packages. Several 3D mode I, II and III …
Rapid evaluation of notch stress intensity factors using the peak stress method: Comparison of commercial finite element codes for a range of mesh pa…
2018
The peak stress method (PSM) is an engineering, finite element (FE)-oriented method to rapidly estimate the notch stress intensity factors by using the singular linear elastic peak stresses calculated from coarse FE analyses. The average element size adopted to generate the mesh pattern can be chosen arbitrarily within a given range. Originally, the PSM has been calibrated under pure mode I and pure mode II loadings by means of Ansys FE software. In the present contribution, a round robin between 10 Italian universities has been carried out to calibrate the PSM with 7 different commercial FE codes. To this aim, several two-dimensional mode I and mode II problems have been analysed independe…
Experimental determination of mode I fracture parameters in orthotropic materials by means of Digital Image Correlation
2020
Abstract The mode I fracture parameters for an orthotropic body are directly calculated from full-field deformation measurements provided by Digital Image Correlation (DIC). Three complementary and direct approaches are evaluated and compared: (i) the determination of the Stress Intensity Factor (SIF) by fitting the displacement field using the analytical expression proposed by Lekhnitskii; (ii) the determination of the J-Integral by using the Energy Domain Integral (EDI) formulation on the raw DIC data; and (iii) the calculation of the J-Integral using the EDI approach on the displacement data fitted using Lekhnitskii’s formulation. A comparative experimental study is performed by testing …
Global/Local FEM-BEM stress analysis of damaged aircraft structures
2008
In this paper a Hierarchical approach for the analysis of advanced aerospace structures is presented. The proposed Global/Local model uses two kind of numerical methods. The first step of the Hierarchical procedure is performed by the Finite Element code Patran/Nastran™, using a coarse mesh to study the global structure, then the local region is analyzed by using a Boundary Element code based on the multidomain anisotropic technique. This code accurately predicts stress concentrations at crack tips with a reduction of the modeling efforts and of the computational time. The Global/Local interface code implemented allows an intuitive extraction of the local region with a substantial reduction…